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ABSTRACT: Shingla River Basin (SRB) with a catchment area of about 790 sq. km, spread along the 
southern Assam’s Karimganj district and part of Mamit district in Mizoram has a large forest cover and 
diverse physiographic features. Large scale reduction in forest cover and landscape changes pose severe 
threat to the biodiversity of the basin. Accurate estimation of long-term changes occurring in large river 
basin is a big challenge. The difficulties involved in accurate quantification of land use and land cover 
changes are: range of data, procedural and analytical complications associated with diverse phenomena, 
space–time patterns and social and biophysical processes. In the present study, multi-temporal satellite 
imageries were used to assess Land Use and Land Cover (LULC) changes in Shingla river basin from 1975 to 
2018. Satellite imageries viz., Lands at 1 MSS (1975), IRS-Resources at 1 LISS III (2008) and Sentinel 2-A MSI 
(2018) were used to assess the LULC changes in Shingla river basin. Maximum likelihood classifier (MLC), a 
supervised classification method in QGIS SCP (Semi-Automatic Classification Plugin) was used to generate 
LULC maps of Shingla river basin for the year 1975, 2008 and 2018. Four LULC classes were selected for 
assessing LULC changes. Results reveal that vegetation cover in SRB witnessed a steady decrease from 
72.45% in 1975 to 58.91% in 2018. Built-up areas increased linearly from 3.71% in 1975 to 12.24% in 2018. 
However, temporal changes in croplands and water bodies were not linear. Croplands increased from 17.46% 
(1975) to 22.49% (2008) and then decreased to 19.18% (2018). Similarly, water bodies increased from 6.37% 
(1975) to 11.06% (2008) and then decreased to 9.65% (2018). Using Kappa statistics, overall accuracy for the 
result was found to be 93.77% with a Kappa co-efficient value as 0.86. The findings of the present study are 
useful for planners and decision makers in sustainable natural resource management and degradation 
mitigation strategies. 

Keywords: Land Use and Land Cover, QGIS-SCP, Satellite imageries, Supervised   classification, Shingla river 
basin (SRB). 

I. INTRODUCTION 

Globally the rate of land use and land cover (LULC) 
change has accelerated, more prominently in regions 
with high population growth [1]. Numerous factors 
associated with LULC dynamics are related to 
agricultural and environmental change [2, 3]. Changes 
in land use and land cover are impacted mainly by a 
complex interaction of social and ecological factors [4]. 
Natural resource management, climate change and 
rural and urban landscape planning are important issues 
which require a comprehensive understanding of land 
use and land cover change [5]. At basin level LULC 
dynamics alters most of the hydrological processes like 
evapotranspiration (EV), ground water recharge and 
overland flow [6]. Impact of LULC change on river basin 
hydrology is of great concern [7] as it can lead to water 
scarcity, flood risk and soil erosion [8]. Hydrological 
responses of a river system and climate variables are 
greatly influenced by the phenomena associated with 
land use and land cover change [9-10]. Both water 
quality and supply are affected by large scale changes 
in land use and land cover [11]. 

Proper assessment, precise and timely monitoring of 
LULC change is essential for effective natural resource 
management and climate change mitigation [12-13].  
Shingla river basin which covers parts of the districts of 
Karimganj and Mamit in north-east India’s states of 
Assam and Mizoram respectively, has undergone 
considerable population growth over the last few 
decades. The increasing population in SRB has 
impacted change in landscape pattern causing large 
scale reduction in forest cover. Shingla watershed with 
its channel networks irrigates a large portion of the 
basin which meets the water demand of the region for 
cultivation as well as vegetation growth. Remote 
sensing and GIS technology minimize both time and 
effort to assess LULC changes especially for large 
areas. Though a number of studies to monitor LULC 
changes using commercial and proprietary remote 
sensing and GIS softwares are available, works on 
LULC dynamics using free and open source softwares 
are few and far between with an obstacle for those 
researchers with no access to these expensive research 
tools. The present work is an attempt to provide scope 
for research on LULC dynamics using free and open 
source softwares. 
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Quantum GIS- a free and open source GIS software 
with a plug in called Semi-automatic Classification 
Plugin (SCP) is used for remote sensing and GIS 
analysis. The objective is to quantify major land use and 
land cover classes in Shingla river basin and detect their 
changes over four decades (1975 to 2018) using multi-
temporal satellite remote sensing data. 

II. MATERIALS AND METHODS 

A. Study area 
The area under study is the Shingla river basin (SRB) 
drained by river Shingla and the adjoining streams. SRB 
is a sub-basin of another major river basin called Barak 
river basin which forms the Barak valley in southern 
Assam, India. Shingla river basin extends from the hills 
of Mamit district in Mizoram to the south-western plain 
of Karimganj district in Assam. Shingla river basin with a 
catchment area of 790 sq km and forms a radial 
drainage system with a number of small watersheds 
formed by streams along its course. Using vector data 
digitized in Google Earth Pro (Version 7.3.2) and QGIS 
(Version 3.8.2), the total catchment area, the length, 
and the direction of the Shingla river course were 
estimated. Shingla originates at an altitude of 365 
meters above sea level in the hills of Mamit district in 
Mizoram which are the offshoots of the Jampui hills 
located in Tripura. The basin also includes an important 
wetland in the downstream called Son Beel wetland, the 
largest freshwater wetland in Assam [14]. 
The wetland, which is also a potential Ramsar site 
serves as an outlet for river Shingla [15].  River Shingla 
travels in the north-south direction from the source to 
the outlet, traversing a distance of about 80 km. Shingla 
bifurcates, beyond the wetland into two distributaries 
which are locally known as Kuchua and Kakra. The 
Kuchua courses 23 km along the north-south direction 
and joins river Kushiara at the frontiers of India and 
Bangladesh.  River Kakra, on the other hand, moves 
along the north-western direction traversing a distance 
of about 93 km and connects to the Kushiara River in 
Bangladesh which finally falls in the Bay of Bengal.  
 
B. Study area map 
Shingla river basin is bounded within 24º47′54″ to 

24º09′40″ north latitude and 92º24′5″ to 92º27′04″ east 
longitude. Fig. 1 illustrates Shingla river basin including 
Son Beel wetland and the outlets of the river along with 
elevations in meters above mean sea level (AMSL). 
Shingla catchment boundary is delineated using SRTM 
DEM (30-meter spatial resolution) in Quantum GIS [16] 
and SAGA (System for Automated Geoscientific 
Analyses) software. 
On-screen digitization is one of the most convenient 
methods and accurate technique for tracing and locating 
map features using a reference map [16-17]. This 
method is used for tracing Shingla river course and Son 
Beel wetland boundary in QGIS and using Google earth 
Pro as a base map. In field GPS tracked shape files and 
field surveyed data are also used. 

 

Fig. 1. Study area map depicting Shingla catchment and 
Son Beel wetland with elevation. 

C. Soil in Shingla basin 
The soil type in the upstream regions of Shingla river 
basin which lies in the hills of Mizoram, mostly belong to 
the soil order inceptisols [18]. Inceptisols are the 
prominent soils found in the mountainous regions which 
are characterized by high silt/clay ratio and are very 
susceptible to erosion [19]. On the other hand, soil in 
the downstream regions of Shingla river basin are fine 
loamy, mixed, hyperthermic which belong to the family 
of Endoquepts [20]. Soil map of Shingla river basin (Fig. 
2) is created in QGIS based on the field collected soil 
sample analysed.  It is observed that the soil in Shingla 
river basin is mostly older alluvium having a texture of 
clay loam. In some parts it is sandy loam in texture. The 
observed pH of the soil ranges from 4.5 to 6.0. 

 
Fig. 2. Soil map of Shingla river basin generated in 

QGIS using field survey and NBSS Soil data. 

D. Vegetation 
The vegetation type in Shingla river basin varies from 
dense to open forest. In the upstream regions which fall 
in the hilly terrains of Mizoram, the basin has mostly 
dense forest but the downstream regions are dominated 
by open forest. Shingla river basin includes an 
ecologically significant forest zone called Shingla 
Reserve Forest which extends to Hailakandi district, 
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Mizoram, parts of Tripura [21] and this is a 
predominantly mixed evergreen and deciduous forest. 
NDVI (Normalized Difference Vegetation Index) map 
showing the vegetation extent of Shingla river basin is 
created in QGIS using Sentinel 2 satellite data of the 
year 2018 (Fig. 3). 
Calculation of NDVI [22] is based on the following 
equation: 

                       ���� =
��	
  ��
�

��	
 � �
�

                                        (1) 

Where, ρ��� represent reflectance at the Near Infra Red 
(NIR) wavelengths (0.7-1.1 µm) and ρ��� represent 
reflectance at the Red wavelengths (0.6-0.7 µm) 
For Sentinel 2 satellite data, NIR is band 8 and Red is 
band 4. Hence, Eqn. (1) can be re-written as  

                   ���� =
�����������

�����������

                                      (2) 

NDVI values range from –1 to +1 with higher values 
indicating dense vegetation and lower values 

representing sparse vegetation. In Shingla river basin 
NDVI values were found to vary from –0.461 to +0.862 
with higher NDVI values observed in the upstream 
regions while the downstream regions showing lower 
NDVI values. 

E. Satellite and ancillary data used 
Remote sensing satellite data used includes Landsat-1 
MSS (GLS), IRS LISS-III and Sentinel 2 for the period of 
1975, 2008 and 2018 respectively, with details depicted 
in Table 1. Shingla river basin comprised of only one 
Landsat scene (path 146, row 43), eight IRS LISS III 
tiles and two Sentinel 2 tiles. WGS (World Geodetic 
System) 84 datum and Universal Transverse Mercator 
(UTM) projection is used in this study. Shingla river 
basin lies in the UTM zone 46N. Hence all the satellite 
images are projected to WGS 84/ UTM Zone 46 N. 

 
Fig. 3. Normalized Difference Vegetation Index (NDVI) map of Shingla river basin using Sentinel 2 image. 

Table 1: Details of the satellite data used. 

S.No. Satellite Name Sensor Acquisition date Path/Raw/Tile 
Spatial resolution 

(meter) 
Source 

1. Landsat 1 MSS 26-03-1975 146/43 60 USGS 

2. IRS Resourcesat 1 LISS III 19-11-2008 G46U05 23.5 NRSC, ISRO 

3. IRS Resourcesat 1 LISS III 19-11-2008 G46U06 23.5 NRSC, ISRO 

4. IRS Resourcesat 1 LISS III 19-11-2008 G46U07 23.5 NRSC, ISRO 

5. IRS Resourcesat 1 LISS III 19-11-2008 G46U08 23.5 NRSC, ISRO 

6. IRS Resourcesat 1 LISS III 19-11-2008 G46U09 23.5 NRSC, ISRO 

7. IRS Resourcesat 1 LISS III 19-11-2008 G46U10 23.5 NRSC, ISRO 

8. IRS Resourcesat 1 LISS III 19-11-2008 G46U11 23.5 NRSC, ISRO 

9. IRS Resourcesat 1 LISS III 24-11-2008 G46U12 23.5 NRSC, ISRO 

10. Sentinel 2 A MSI 30-12-2018 T4QDM 10 ESA, Copernicus 

11. Sentinel 2 A MSI 30-12-2018 T46RDN 10 ESA, Copernicus 

 
QGIS version 3.8.2, a freely available open source GIS 
software is used for both remote sensing and GIS 
analysis. QGIS has an important plug-in called SCP 
(Semi-automatic Classification plug-in) which is used for 
satellite image processing, study area extraction and 
Land Cover Land Use Classification. Final map is also 
 

generated in QGIS map composer using raster data and 
digitized vector data. SAGA (System for Automated 
Geoscientific Analyses) is used for Shingla river 
catchment delineation using 30 meters SRTM DEM.   
Pixel based maximum likelihood supervised 
classification method is used for LULC classification in 
Shingla river basin (Fig. 4).  
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Fig. 4. Workflow of LULC in Shingla river basin. 

III. RESULTS AND DISCUSSION 

LULC maps of Shingla river basin generated in QGIS 
SCP using maximum likelihood classifier (MLC) are 
given in Fig. 6 for the years 1975, 2008 and 2018 
respectively.  
The challenges involved in data availability are 
overcome by the acquisition of satellite data and ground 
trothing using field survey data. Data from three different 
satellites viz. Landsat MSS (1975), Resource sat 1-LISS 
III (2008) and Sentinel 2-MSI (2008) are used along with 
ancillary data. Four land use and land cover classes are 
selected for the study. In terms of area, major land use 
and land cover classes in Shingla river basin during 
1975-2008 are: vegetation > cropland > water bodies > 

built up (Table 2). Post 2008, rapid expansion in built up 
areas changed the LULC area order as:  vegetation > 
cropland > built up> water bodies (Table 2).  Results 
show that major decline in SRB LULC is in vegetation 
cover (Fig. 5) which decreased from 72.45% in 1975 to 
62.38% in 2008 and further decreased to 58.91% by 
2018.  Built-up areas increased linearly from 3.71% in 
1975 to 4.06% in 2008 and further increased to 12.24% 
by the end of 2018. However, temporal changes in 
croplands and water bodies are non-linear with 
croplands increasing from 17.46% (1975) to 22.49% 
(2008) and then decreased to 19.18% (2018). Similarly, 
water bodies increased from 6.37% (1975) to 11.06% 
(2008) and then decreased to 9.65% (2018). 

Table 2: Area and percentage change in different land use and land cover categories of SRB during 1975 – 
2018. 

LULC 
Categories 

1975 2008 2018 Change 

Area (Km
2
) % Area (Km

2
) % Area (Km

2
) % Area (Km

2
) % 

Water 50.42 6.37 87.54 11.06 76.38 9.65 +25.96 3.28 

Vegetation 573.49 72.45 493.78 62.38 466.31 58.91 -107.18 13.54 

Cropland 138.2 17.46 178.02 22.49 151.82 19.18 +13.62 1.72 

Built up 29.36 3.71 32.13 4.06 96.88 12.24 +67.52 8.53 

Total 791  791  791    

Input Data

Satellite Data Field survey
Data 

Landsat 1/GLS
MSS (1975) 

IRS-Resourcesat 1
LISS III (2008)

Sentinel 2
MSI (2018)

Reprojected &
Clipped

to study  area

Reprojected, mosaiced
& clipped to
study area

Reprojected, mosaiced
& clipped to
study area

DOS1
Atmospheric Correction

Band set creation/
Virtual Raster

Training Input/ROI
Creation

Classification using MLC
(Maximum Likelihood

Classifier)

1. Water
2. 
3. Cropland
4. Build-up

Vegetation

Google Earth

Accuracy
assessment

Change detection

Result analysis

Toposheet
Sample GPS

points (Total: 100)

Workflow of Land  use and land cover change mapping in Shingla river basin
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Fig. 5. Major Land Use and Land Cover classes in Shingla river basin in 1975, 2008 and 2018. 

 

Fig. 6. Land Use and Land Cover change maps of Shingla river basin for the year 1975, 2008 and 2018. 

A. Accuracy assessment 
Quantification of map accuracies is done by creating an 
error matrix, also known as confusion matrix that 
compares the classification map with a reference map 
[23]. For ground truthing and accuracy assessment of 
the obtained results, ancillary and field survey data 
being essential, randomly 100 estimated GPS points are 
collected from the basin during field visits, based on the 
Eqn. (3) of [24] as stated below. 
Random points are also collected from high resolution 
Google Earth imageries for the locations where access 
is difficult especially in the mountainous regions. 

            N = {∑
�������

��� ! }#                                                       (3) 

where, Wi = mapped area proportion of class i 
Si = standard deviation of stratum i 
So = expected standard deviation of overall accuracy 

Survey of India topo sheets (1:250 000 scale) were also 
used for accuracy assessment in case of Landsat 1 
MSS (1975) satellite data. Kappa statistical analysis is 
used for accuracy assessment of the created LULC 
maps of Shingla river basin. Kappa analysis is a 
commonly used multi-variate statistical tool for accuracy 
assessment [25, 26].  
The estimate of kappa method is known as K-HAT 
statistics and is calculated by the equation described by 
[27-29] as 

            K% =  
& ∑ '()�∑ '(')

*
(+,

*
(+,

&-�∑ '(')
*
(+,

                                           (4) 

where, r = Total number of rows and columns 
N = Total number of observations 
Xij = Total observation in row i and column j 
Xi = Sum of values in row i 
Xj = Sum of values in column j 
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Table 3: Results of kappa statistics. 

Year 
Producer’s accuracy (%) User’s accuracy (%) Overall 

accuracy 
(%) 

Kappa/hat 
coefficient 

 
W V CL BU W V CL BU 

1975 100.00 93.62 85.72 100.00 40.00 100.00 86.36 66.66 92.55 0.81 

2008 100.00 94.23 93.11 100.00 70.00 98.33 92.00 60.00 92.60 0.86 

2018 100.00 99.88 95.08 79.76 60.00 96.66 95.00 100.00 96.17 0.92 

W= Water bodies, V= Vegetation, CL= Cropland, BU= Built-up areas. 

Results of kappa statistical analysis are given in Table 3 
with producer’s, user’s, overall accuracies and kappa 
hat statistics. Standard Kappa hat values range from 0 
to 1. K value of 1 implies perfect agreement and K value 
less than 0 i.e. negative K value implies no agreement 
between the observed and the actual results. K values 
higher than 0.75 indicate an excellent agreement while 
lower than 0.4 indicates a poor agreement [25].  Overall 
LULC map accuracies are 92.55%, 92.60% and 96.17% 
with kappa hat values of 0.81, 0.86 and 0.92 for the 
respective years 1975, 2008 and 2018 (Table 3). 
Standard LULC maps require an optimum accuracy 
above 90% [30-31]. 

IV. CONCLUSION 

Vegetation is the major land cover class in Shingla river 
basin which however reduced by 13.54% by 2018 
(Table 2), indicating large scale deforestation over the 
last four decades as the cause for depletion. Agricultural 
cropland, the second major land use class increased by 
1.72% by 2018.  The trend in the change of cropland 
indicates conversion of forest cover to croplands 
between 1975 and 2008 but post 2008 the decline in 
croplands is due to increase in built up areas that 
increased from 3.75% to 12.24% in 2018 (Table 2). In 
the third major land use class, water bodies in the basin 
have increased by 3.28% (Table 2) over the last four 
decades and increase in water bodies is potentially due 
to increase in number of ponds, canals and flood plains. 
Son Beel wetland located in the downstream of Shingla 
river basin is the major water source. More croplands 
along the wetland have been converted into flood plains 
due to siltation and agricultural practice. This has 
though led to increase in water bodies, the actual 
wetland extent has decreased which is evident from the 
decrease in water from 11.06% to 9.65% in 2018.  

V. FUTURE SCOPE 

This being the first work of its kind on Shingla river 
basin, this study will be helpful for planners and decision 
makers in sustainable natural resource management 
and mitigation strategies. 
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